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BASIC 
TERMINOLOGY

measurement error [VIM]: 
measured quantity value minus a reference quantity value

Basic definitions

bias: 
average of the measured values 

minus the reference value

e.g.: noise interference,
fluctuations in environmental conditions, … e.g.: lack of calibration, 

time instability of instruments, …

two components: 
systematic error [VIM]: 

in replicate measurements remains 
constant or varies in a 

predictable manner

random error [VIM]: 
in replicate measurements 

varies in an unpredictable manner

International Vocabulary of Metrology
//

a reference value 
is required

random errors express variability
not related to a reference value



measurement data are modeled as 
realizations of a random variable

distribution of measurement data is represented by a 
probability density function (pdf)

Measurement data model

concept of pdf implies continuity of values:
we neglect that measurement values are 

defined on a discrete scale due to 
finite resolution of instruments

Measurement result

𝑥

𝑝 𝑥

𝑥 𝑟

𝑥

𝑝 𝑥
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pdf describing
definitional uncertainty

possible values of r.v. 
describing the 

measurand

= 

“true” value of the measurand
(unknown) definitional error

random error

systematic error

random errors has zero mean
by definition: offsets are 

accounted for by systematic errors

mean value 𝑥 of repeated measurement assumed as the 
best approximation of the measurand value 𝑥

estimated as the (arithmetic) 
average of measurement data

called 
measured value

Accuracy

accuracy [ISO 5725]: 
the closeness of agreement between a test result 

and the accepted reference value

a measurement is said to be 
more accurate when it offers a

smaller measurement error [VIM]
accuracy depends on both 

systematic and random errors

defined for a 
single measurement

“test results” emphasizes 
accuracy as a feature of 
measuring instruments

instead of 
measurement results

an instrument is accurate if 
each result it produces is accurate

in specified 
operating conditions 

reference is known when calibrating an instrument 
(reference is provided by a measurement standard)

reference is not known when measuring: it should be 
the measurand “true” value, which is unknowable (VIM)

Precision - Trueness

accuracy consists of two components [ISO 5725]: 
trueness: precision: 

the closeness of agreement between:

independent test results 
obtained under stipulated conditions

the average value obtained from 
a large series of test results and 

an accepted reference value

similar to measurement error 
which is composed of 

systematic and random errors
unlike accuracy require 

a series of values

depends on a 
reference value

concept 
rarely used

systematic error
related to the closeness

to a reference value
depends only on random errors 

does not relate to a reference value

random error
related to closeness of measurement 

results to each other



Precision - Trueness

trueness:precision: accuracy:

feature of an instrument that indicates its capability of avoiding: 
random 
errors

systematic 
errors

measurement 
errors

the greater the trueness 
the less the systematic errors 

the greater the precision 
the less the random errors 

the greater the accuracy
the less the measurement errors 

the closer the 
measured values 

to each other
the closer the average of 
the measured values to 

the reference value
the closer the 

measured values to 
the reference value

high accuracy needs both 
high trueness and high precision 

there are no standardized procedures to evaluate 
accuracy as a function of trueness and precision

Visual representations

Ref.: S. Shirmohammadi, L. Mari, D. Petri, "On the Commonly-Used Incorrect Visual 
Representation of Accuracy and Precision,” IEEE Instr. and Meas. Magazine, 2021

bullseye charts are often used to visually explain the concepts

black dots represent the values 
returned by replicated measurements 

great  majority  of pictures 
found with google image search 

are wrong

e.g., with the search phrase 
“accuracy and precision” reference represented by 

the red bullseye

(A) accuracy is related to a single measured value: singularly, values 
in (A) are located w.r.t. the bullseye as in (D), labeled “low accuracy”

(A), (C): values are further from each other compared to (B) and (D)
instrument precision is correctly visualized
even if the bullseye is hidden (random errors are not related to a 
reference value) the information about the relative spread of the 
black dots would remain visible 

(A) the concept of “high accuracy and low precision” is a nonsense:
a measurement instrument cannot be accurate and imprecise at 
the same time!

(C), (D): average value is off the red bullseye: low trueness due 
to systematic errors precision
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correct 
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Visual representations
visual representations of measured values of 

replicated measurements of the same measurand using an instrument 

these pictures 
are wrong

this picture 
is correct

assuming that 
a reference value is known

systematic error

this is trueness, not accuracy

it seems that the greater 𝑣 𝑣 , 
the greater the precision (the opposite is true)

it seems that the greater 𝑣 𝑣 ,
the greater the trueness (the opposite is true)

MEASUREMENT 
UNCERTAINTY

Uncertainty

accuracy can be used to characterize instruments 
since it requires the knowledge of a reference value, 

which is not available for measurement

not measurement results

uncertainty of measurement (GUM):
parameter, associated with the result of a measurement, 

that characterizes the dispersion of the values 
that could reasonably be attributed to the measurand

Guide to the Expression of 
Uncertainty in Measurement 

a parameter that 
summarizes the distribution 

of measured values

dispersion of measurement data 
about their mean value is quantified 

by the standard deviation (std)

Standard uncertainty

an estimate of the 
std of the measured value 𝑥 is called 

standard uncertainty 𝑢 𝑥
suggested 
notation



it is often required an interval about the measured value 
that may be expected to encompass a 

“large fraction” of values distribution
that could reasonably be attributed to the measurand

Expanded uncertainty

called coverage interval

quantified by the coverage probability 𝑝 𝑥  
(or level of confidence) of the interval

half-width of the coverage interval is called 
expanded uncertainty 𝑈 𝑥

suggested 
notation

usual 
notation

Expanded uncertainty
to build a coverage interval, 

measurement data pdf must be known (or assumed)

pdf shapes that often may be reasonably assumed:
- normal - uniform   - triangular 
- U-shaped - Weibull - Poisson …

most common 
assumption

for normal pdf: U x kp u x
coverage factor

depends on 
coverage probability p x

kp 1 for p x   68.3%
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UNCERTAINTY 
EVALUATION METHODS



Evaluating standard uncertainty

Type A evaluation
by statistical analysis 

of the distribution of data from replicated measurement

Type B evaluation
by means of non-statistical analysis

of measurement data, 
based on experience or other a priori information

two methods of evaluation of uncertainty:

two components of uncertainty that 
usually (but not always) are related to

random or systematic effects, respectively 𝑛 independent observations 𝑥𝑘 of a random variable 𝒙

Type A evaluation method

the best estimate of the expectation of :

assumed as the 
measured value

under generally 
satisfied constraints 

repeated measurements enable the identification of the 
effects of random fluctuations of influence factors

e.g., on the instruments 
or the measurand

dispersion of measurement data about the mean 
can be characterized by the standard deviation , 

estimated by the experimental variance:

Type A evaluation method

experimental variance of the mean :   

standard uncertainty
of the measured value :

type A method of 
uncertainty evaluation 

Numerical example

measurement uncertainty evaluated using a 
type A evaluation method:

• measured (average) value:   𝑉 9.2583 V
taken as the best estimate of the value of the measurand

• experimental standard deviation (of data): s 𝑉 0.93 mV
• standard uncertainty: 𝑢 𝑉 s 𝑉 7 0.35 mV⁄

1 9.25852 9.25973 9.25734 9.25685 9.25866 9.25927 9.2581

readings
measurement of a DC voltage with a multimeter:– 5-digit instrument in high resolution mode– 10 V range– 𝑛 7 repeated observations



short-time data variability usually 
does not include all uncertainty sources

during measurement, 
values of influence factors are almost constant, 

but they differ from the instrument calibration ones 

Type B evaluation method

systematic contribution on measurement data 
that can be evaluated using 

a priori available information on sensitivity to influence factors 

can’t be detected by 
repeated measurement

a priori available information:
• previous measurement data
• experience with, or general knowledge of, the behavior and 

properties of relevant systems and instruments
• manufacturer’s specifications (user’s manual)
• data provided by calibration and other certificates
• uncertainties assigned to reference data taken from handbooks

Type B evaluation method

accuracy of uncertainty evaluated using type B methods 
strongly depends on available information: 

reliability proper use
which calls for insight based on

experience and general knowledge, 
skills that can be learned with practice

common available 
information

measurement uncertainty evaluated using a 
type B evaluation method

available information: user manual, which shows that the 
instrument characteristics (may) change with time (aging)

Numerical example

measurement of a DC voltage with a multimeter:– 5-digit instrument in high resolution mode– 10 V range
– instrument reading: 9.2587 V

half-width  of the coverage interval due to aging effects:
  0.02% of reading  6 digits

  2 10-4 9.2587  6 10-4  2.5 10-3 V  2.5  mV

Numerical example
table extracted from 

user’s manual

% of reading  # digits

secondary influence properties are neglected:
only 1 or (at most) 2 digits are significant 

uncertainty expressed with 
1 or (at most) 2 digits

time elapsed 
from calibration



standard uncertainty evaluation requires to know the pdf of readings

Numerical example

𝑢 𝑉  1.4 mVderived standard uncertainty: 

since no information is available about 
the distribution of readings due to aging,

the same probability is assigned to 
all possible values

-  a
pa

systematic effect 
due to aging

1 2∆

uniform distribution
assumption follows from the 

Maximum Entropy Principle of statistics 
It is criticized

there are no reasons to consider some 
values more probable than others

𝑢 𝑉 0.35 mV obtained from repeated measurements is almost negligible

systematic error 𝑏 can be due to𝑁 1 different uncertainty sources:

Type B evaluation method

𝑏   𝑏 ,
e.g., more instruments

if 𝑁 45, 𝑏 , uncorrelated and of the same order of magnitude: 𝑏 is almost Gaussian with estimated variance:
Central limit theorem 𝑢 𝑥  𝑢 , 𝑥

Central limit theorem

almost normal pdfs are often obtained for 𝒚 if 𝑁  4 5
the larger 𝑁, the better the approximation

given 𝒚  𝑓 𝒙1, 𝒙2, … , 𝒙𝑖, … , 𝒙𝑁 , 

linear combination of r.vs.
If:
• none 𝑖 dominates the others
• none combination coefficient dominates the others
• 𝑁  

then the pdf of 𝒚 is normal, 
no matter on the shapes of the pdfs associated with 𝒙𝑖

COMBINED 
UNCERTAINTY



very often influence factors:

Combined uncertainty

contributions to measurement results 
of both phenomena must be considered

are affected by 
random fluctuations

differ from the values 
assumed during calibration

both type A and type B evaluation methods 
must be jointly applied 

and the obtained uncertainties 𝑢𝐴 𝑋 and 𝑢𝐵 𝑋 must be combined 

random fluctuations and differences w.r.t. the calibration context 
are due to different physical phenomena

Combined uncertainty

combined 
standard 

uncertainty

the related effects can be assumed uncorrelated 
and composed “in quadrature”:

in the above example:  𝑢𝐴 𝑉 0.35 mV, 𝑢𝐵 𝑉 1.4 mV𝑢 𝑉   𝑢𝐵 𝑉 1.4 mV

expanded uncertainty is then evaluated as: 

usual coverage factor 
values: 2  k  3

INDIRECT 
MEASUREMENTS

Indirect measurement
measurand value is often obtained using mathematical computation

e.g.: electric power in DC conditions: 𝑃 𝑉 𝐼
impedance of an electric load: 𝑍 𝑉 /𝐼

mechanical power: 𝑃 𝑇  
r.v. modeling 

measured quantities
deterministic 

function
r.v. modeling 

measurand values

𝑦 𝑓 𝑥 , 𝑥 ,…, 𝑥 ,,…𝑥
estimate of the “best” 

measurand value
(often defined as 𝐸 𝒚 )

measured value
(estimate of 𝐸 𝒙 )



assumptions:

Indirect measurement

standard uncertainty of each 
input quantity 𝒙𝑖, 𝑖 1, … , 𝑛 is known
and its value assures small deviations

from the measured value 𝑥𝑖 
function 𝑓 ·  is fairly linear 

about measured values 𝑥𝑖 , 𝑖 1, … , 𝑛

𝑦 𝐸 𝒚 if the deviation of 𝑥𝑖  from 𝐸 𝒙𝑖 is negligible

derivatives are evaluated in the 
measured values 𝑥𝑖 of the input quantities

measured value measured value

𝑓  can be approximated by the 
first order terms of its 

Taylor series expansion centered on 𝑥𝑖

𝒚 𝑦  𝜕𝑓𝜕𝑥 𝒙 𝑥

Limitations

derivatives can be difficult/impossible to evaluate

if the magnitude of all derivatives is close to zero, 
or the nonlinearity of 𝑓 · is significant, 

higher-order terms of the Taylor series must be considered 

e.g.: when 𝑓 · is implemented by 
an algorithm with if-the-else clause

squaring the linear approximation: 

𝒚 𝑦 𝜕𝑓𝜕𝑥 𝒙 𝑥 2 𝜕𝑓𝜕𝑥 𝜕𝑓𝜕𝑥 𝒙 𝑥 𝒙 𝑥
Mathematical model

taking the expectation:𝐸 𝒚 𝑦 𝜎   𝑢 𝑦𝐸 𝒙 𝑥 𝜎   𝑢 𝑥  𝐸 𝒙 𝑥 𝒙 𝑥 𝜎 𝜎   𝑢 𝑥 , 𝑥 𝑢 𝑥 , 𝑥
(estimated) covariance of 𝑥𝑖 and 𝑥𝑗

𝑢c 𝑦 𝜕𝑓𝜕𝑥 𝑢 𝑥 2 𝜕𝑓𝜕𝑥 𝜕𝑓𝜕𝑥 𝑢 𝑥 , 𝑥

the degree of correlation (correlation coefficient) 
between 𝑥𝑖 and 𝑥𝑗 can be estimated as:𝑟 𝑥 , 𝑥 𝑢 𝑥 , 𝑥𝑢 𝑥 𝑢 𝑥

where 𝑟 𝑥 , 𝑥 𝑟 𝑥 , 𝑥

Mathematical model

Law of Uncertainty Propagation (LUP)

𝑢c 𝑦 𝜕𝑓𝜕𝑥 𝑢 𝑥 2 𝜕𝑓𝜕𝑥 𝜕𝑓𝜕𝑥 𝑢 𝑥 𝑢 𝑥 𝑟 𝑥 , 𝑥

1 𝑟 𝑥 , 𝑥 1
= 0 if measurements 𝒙𝑖 and 𝒙𝑗 are uncorrelated



if measurements of all quantities 𝒙𝑖 and 𝒙𝑗 are uncorrelated:

𝑢c 𝑦 𝜕𝑓𝜕𝑥 𝑢 𝑥
Special cases

similar expressions hold for relative uncertainty: 𝑣 𝑦

worst-case: 

𝑢c 𝑦   
𝜕𝑓𝜕𝑥  𝑢 𝑥since 𝑟 𝑥 , 𝑥 1:

𝑟 𝑥𝑖, 𝑥𝑗 0, 𝑖 𝑗, 𝑖, 𝑗 1, … , 𝑛
assumptions:

• partial derivatives of 𝑓 · exist; at least one of them significantly differs from zero• 𝑓  is fairly linear about 𝑦
• none of the standard uncertainties 𝑢 𝑥 dominates the others
• the number 𝑁 of input quantities if high enough

Expanded uncertainty

measurement result 𝒚 is almost normally distributed

central limit theorem (CLT) 
can be applied

provided by the LUP 

expanded uncertainty 𝑈 𝒚 𝑘 𝑢𝑐 𝒚
coverage factor 

related to a given 
coverage probability

if the above constraints do not hold, 
the CLT may lead to

incorrect evaluation of expanded uncertainty

Expanded uncertainty

the pdf of 𝒚 can be derived using Monte Carlo simulations

Supplement to the GUM issued by BIPM (2008) 
http://www.bipm.org/en/publications/guides/gum.html

Numerical example

measurement of a DC power by measuring
DC voltage and DC current with two different multimeters
• input quantities: 𝑉 and 𝐼 
• mathematical model: 𝑃 𝑉 𝐼
• only available information: manufacturer’s specifications

measurement uncertainties of 𝑉 and 𝐼 
evaluated using a type B evaluation method

readings:
• 𝑉  8.0125 V 10 V range
• 𝐼  50.105 mA 100 mA range
measured power:     𝑃 0.4015 W



  2.2 mV𝑢 𝑉  1.3 mV

Numerical example

voltage uncertainty evaluation

  45 A𝑢 𝐼 3 26 μA

Numerical example
current uncertainty evaluation

since two different instruments are used, 
voltage and current measurements can be assumed uncorrelated

Numerical example

if worst-case correlation is considered:

𝜕𝑃𝜕𝑉 𝐼 50.1 mA
𝑢c, 𝑃 𝜕𝑃𝜕𝑉 · 𝑢 𝑉 𝜕𝑃𝜕𝐼 · 𝑢 𝐼 0.22 mW

𝜕𝑃𝜕𝐼 𝑉 8.01 V

𝑢c, 𝑃 𝜕𝑃𝜕𝑉 𝑢 𝑉 𝜕𝑃𝜕𝐼 𝑢 𝐼 0.27 mW

0.21 mW0.06 mW
e.g., because only one instrument is 
used to measure both voltage and 

current so that 𝑟 𝑉, 𝐼 ≅ 1

uncorrelated inputs:

Special cases

worst case:



APPENDIX: 
GENERAL REQUIREMENTS 
for uncertainty evaluation 

methods

The requirements

 The method should be universal: it should be applicable to all 
kinds of measurements and types of input data

 The quantity used to express uncertainty should be:

• internally consistent, i.e. directly derivable from the components that 
contribute to it, as well as independent of how these components are 
grouped and of the decomposition of the components into sub-components

• transferable: it should be possible to use directly the uncertainty 
evaluated for one result as a component in evaluating the uncertainty of 
another measurement in which the first result is used

• The true value of the measurand is unknown and unknowable 
 the error approach can't be followed

• “the distribution of values that could reasonably be attributed 
to the measurand”  needs to be determined
– we don't know the value of the measurand
– we don't know whether it belongs to that distribution or not

• The GUM states: “It is assumed that the result of a measurement 
has been corrected for all recognized systematic effects and 
that every effort has been made to identify such effects” (art. 3.2.4)

Assumptions


