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• A social robot is an autonomous robot that interacts and communicates with humans or other 
autonomous physical agents by following social behaviours and rules attached to its role. 

• Human/Machine interactions can be potentially useful as they can affect people’s wellbeing, 
behaviour and interaction with others.

• Social robots can interact with people in their own space and provide healthcare, 
rehabilitation and lifestyle support, while being reliable and inexpensive.

Rod Walsh, Tampere University of Applied Sciences, The first DMU workshop on Assisted Living Technologies (ALT 2012)
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Social Robotics



• The emergence of coordinated behaviour between humans is a complex 
phenomenon characterised by highly nonlinear behaviours.

• At the core of the interaction lies a fundamental feedback mechanism between the 
players.

• The aim of current research is to understand how processes of motor coordination 
can be modelled and how they are influenced by specific features of the 
individuals involed (e.g. similarity/dissimilarity).

• The use of virtual avatars (VP) has been proposed as an effective methodology to 
explore these effects as their properties can be changed at will.
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Human Movement Coordination



• To design cognitive architectures able to drive virtual avatars or robots in 
interacting with humans we need some paradigmatic case of study

• We will focus here on motor coordination between two or more players 
• We will then

1. Explore how to model the coordination process among individuals and what 
influences the level of coordination between them

2. Exploit the model to synthesize cognitive architectures to drive a virtual avatar in 
interacting with humans

3. Validate through appropriate metrics the performance of such interaction
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A design pipeline
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The mirror game: a paradigmatic example

• We use the mirror game as a simple yet effective 
paradigm. 

• In its simplest formulation, the mirror game features two 
people imitating each other’s movements at high 
temporal and spatial resolution. 

• It can be played in different conditions:

• Leader-Follower (LF) 
• Joint Improvisation (JI)
• Solo condition (S)

Noy, Lior, Erez Dekel, and Uri Alon. "The mirror game as a paradigm for studying the dynamics of two people improvising motion together." Proceedings of the National Academy of 
Sciences 108.52 (2011): 20947-20952.



• Powerful paradigm for studying 
human motion and interpersonal
human coordination

• We focus on the problem of 
exploring how differences in the 
way the players move when 
playing solo (on their own) affect 
their interaction.
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The mirror game
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Motivation

• Coordination games can be used to help people suffering from social disabilities (as for example 
schizophrenia) improve their social skills.

• In order to implement an effective rehabilitation, the patient should ideally interact first with people 
who are similar to him/her, and then gradually with someone who is totally different.

• To implement this scenario it is necessary to create an avatar or virtual player (VP) able to play the 
mirror game.

• This was the goal of the EU project ALTEREGO.
• We will focus on the problem of designing a control architecture 

(or cognitive architecture) able to drive the virtual player as a:
• leader;
• follower;
• joint-improviser. www.euromov.eu/alterego
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Motivation
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Why feedback control theory?

• The problem of designing a virtual player able to coordinate its motion with a human player 
can be seen as a control design problem.

• The goal is that of designing a cognitive architecture able to drive the motion of the VP 
interacting with a human player in real-time while exhibiting different features (e.g. different 
kinematic signatures).

• This is a typical nonlinear control design problem… 

Control = sensing + computation + actuation

• We also need a model of the system we wish to control.
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• One of the earliest model is the HKB oscillator
• Originally developed to explain some phenomena observed in the bimanual experiments [3], and 

then vastly used later on in different contexts dealing with coordination between two people.

• We can think of this model as a control system of the form
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The Haken-Kelso-Bunz (HKB) oscillator
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[2] Słowiński, P., Zhai, C., Alderisio, F., Salesse, R., Gueugnon, M., Marin, L., ... & di Bernardo M. , Tsaneva-Atanasova, K. (2015). Dynamic similarity promotes interpersonal coordination in joint-action. Royal Society 
Interface, 2016
[3] Haken, H., Kelso, J. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological cybernetics, 51(5), 347-356.



• Other modelling approaches have been proposed in the 
literature that relate to this control architecture:
- The reactive-predictive control (RPC) proposed by Noy et al (2011);
- The Human Dynamic Clamp (HDC) proposed by Dumas et al (2009; 

2014).

15

Other approaches
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Reactive-Predictive Controller model

• In the RPC the motion of each player is modelled 
as

with the coupling determined by 

and the parameters of the series expansion 
being computed adaptively as

Noy, Lior, Erez Dekel, and Uri Alon. "The mirror game as a paradigm for studying the dynamics of two people improvising motion together." Proceedings of the National Academy of Sciences 108.52 
(2011): 20947-20952.
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RPC model performance

• RPC manages to 
reproduce:
★ jitter motion in LF 

condition;
★ jitter-less accurate 

motion in JI 
condition;

★ Clearly the generated 
motion is simple,

★ not very accurate in 
terms of temporal 
correspondence.

• Also no control of the 
signature.

Experimental Data

LF

JI

Model

LF

JI



18

Human dynamic clamp

Dumas, de Guzman, Tognoli, Kelso. “The human dynamic clamp as a paradigm for social interaction”. Proceedings of the National Academy of Sciences, 111.35 (2014): 3726-3734.

• The HDC paradigm is introduced to directly manipulate the interaction between a HP and a VP 
based on the use of a mathematical model.

• It is used to model the interactions between HP and VP in different scenarios:
✦ rhythmic behaviour;
✦ discrete behaviour;
✦ adaption to changes of pacing;
✦ behavioural skill learning as 

specified by a virtual “teacher”.
• Different model for each scenario.
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HDC – Rhytmic behaviour

HKB model

• position and velocity of the VP;

• position and velocity of the HP;

• tunable parameters;

• oscillation frequency;

• coupling parameters;

• determines in phase (1) or anti-phase (-1) coordination.

Anti-phase coordination                : HP is supposed to follow VP

Control input
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HDC – Discrete Behaviour

Jirsa-Kelso excitator model

• position and velocity of the VP;

• position and velocity of the HP;

• oscillation frequency;

• tunable parameters;

• determines in phase (1) or anti-phase (-1) coordinat.;• time constant;

• coupling parameters.

In phase coordination                : VP is supposed to follow HP

Control input



Adaption to changes of pacing
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Jirsa-Kelso excitator model

In phase coordination                : VP is supposed to follow HP

• strength of the adaptation;

• preferred frequency;

• strength of the preferred frequency.

Control input

Adaptive parameter



Some remarks
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• In all these cases, a nonlinear feedback control input is used to steer the dynamics of some 
model of the VP motion in real time, e.g.

• Both the HDC and RP control have some key limitations
• The movement to be reproduced is almost periodic and it is rather simple in terms of 

amplitude and frequency; 
• no control of the “tracking error” between the players ;

(temporal correspondence)
• no control of the VP kinematic features (we want the VP to exhibit human-like behaviour)

• Also, the VP cannot generate spontaneous movements 
(i.e., it cannot act as a Leader).

• Convergence and stability are not guaranteed analytically.
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Multi-objective strategy
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• We want to design a different control strategy for the VP able to achieve:
1. the desired game condition (L, F or JI);
2. bounded tracking of the human player motion (temporal correspondence); 
3. desired kinematic properties, e.g. a given kinematic signature (velocity pdf), which is unique 

and time-persisting for each human.

Individual Motor Signature (IMS)
Participants were asked to perform three solo sessions 
separated by at least one week. 
Within each session, participants were required to perform 
three 60s rounds.
Different colours refer to different participants in the 
“similarity space”.

Słowiński, Piotr, et al. "Dynamic similarity promotes interpersonal coordination in joint 
action." Journal of The Royal Society Interface 13.116 (2016): 20151093.
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Individual Motor Signature



• We found that similarity in the velocity profile (pdf) of each player when 
improvising motion in the mirror game influences the level of coordination 
between them

• To compare pdfs we used the Earth Movers’ Distance or EMD as a metric 
to measure their similarity

26

Individual Motor Signature



Mirror game as a control problem

27

• As a model of the VP movement we use an HKB oscillator but redesign the control input to 
achieve the control goals:

with  x: position of the VP;   rp and rv: position and velocity of the  HP.

• In the following we will:
✦ start with controlling temporal correspondence between the players in a leader-follower 

condition;
✦ move onto controlling kinematic similarity as well;
✦ explain how to implement a joint-improvisation condition.



Temporal correspondence
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• The velocity of the HP is estimated by the following backward difference rule

so that the position of the HP can be predicted by



Control design
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• We started from the classical HKB coupling but with adaptive parameters chosen so as to guarantee 
convergence

with

• We then added an extra term to control the tracking error when the velocity mismatch between the player is 
small (and the coupling tends to zero).

• We were able to prove and estimate convergence.

Zhai, C., Alderisio, F., Tsaneva-Atanasova, K. and di Bernardo, M. “Adaptive Tracking Control of a Virtual Player in the Mirror Game,” Proc. IEEE Conference on Decision and 
Control, 2014, pp. 7005–7010.

Zhai, C., Alderisio, F., Tsaneva-Atanasova, K. and di Bernardo, M. "A novel cognitive architecture for a human-like virtual player in the mirror game." Proc. IEEE 
International Conference on Systems, Man, and Cybernetics, 2014, pp. 754-759.



Validation
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Experimental Setups

• We carried out the numerical and experimental validation of our strategy (adaptive feedback control, 
AFC) comparing it with the performance of the RPC proposed by Noy et al.

• For the experiments we use two set-ups: one based on  a leap motion controller (used in the paper in 
the proceedings) and the other to be used with patients.



Experimental set-up (Bristol, UK)
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Leader: HP (green),   Follower: VP (blue)



Experimental validation (Montpellier, France)
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Experimental validation of the adaptive tracking algorithm at the hospital in Montpellier, France.

Leader: HP,   Follower: VP (avatar)



Leader (HP) - Follower (VP) 
game

33Blue: AFC, Red: RPC, Green: HP (leader)

Temporal correspondenceKinematic similarity



An alternative strategy
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• Adaptive control performs well but no control of the motor signature is possible and the VP 
cannot improvise its motion with a HP.

• To solve this problem we moved to a different control algorithm based on 
optimal feedback control (OFC).

• We consider finite time intervals and assume that on each of them the player tries to minimise the 
relative position error with the other player…

• … while being constrained by the kinematic features of its own motor signature



Optimal control
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• We formulate the problem as an optimal control problem over a finite time horizon.
• Namely, on each subinterval, we look for the optimal control input that minimises

where           is the time series associated to the desired signature (velocity profile), the position of the HP is 
estimated as and            are predicted by the following model 
(dynamic constraint):

Temporal correspondence Signature control Control effort



Different game configurations
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• Note that by tuning the parameter                      we can change the behaviour of the VP by making it 
more or less sensitive to the movement of the HP.

• In so doing the VP can act both as a leader (             ) or as a follower (           ).

• For Joint imporvisation we add an extra term to the cost function.

Additional term



Cognitive architecture

37
Zhai, C., Alderisio, F., Tsaneva-Atanasova, K. and di Bernardo, M. “A model predictive approach to control the motion of a virtual player in the mirror game,” 
Proc. IEEE Conference on Decision and Control, 2015, pp. 3175-3180.



Signature generation and estimation
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• In order to implement the controller
we need a signature generator able
to generate a velocity time series
associated to the desired signature
velocity (pdf).

• We started by using pre-recorded 
velocity time series of real human 
players collected during solo trials.

• A signature estimator is used to 
evaluate the signature of the VP in 
real time.

• At the moment we use simply the velocity of the VP during the game but other solutions are possible.

Signature
generator

Signature
estimation

Signature
control
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Experimental validation

• We validate our approach in several scenarios.
• To evaluate the control performance we need to define appropriate

metrics
• To assess temporal correspondence we use the  root mean square of the position Error 

(RMS) computed as:

• To assess the similarity/dissimilarity between motor signatures we use the EMD between 
their distributions:

• We also keep track of the control energy:

40



Virtual follower configuration
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Control parameters

Temporal correspondence

Signature difference

Control effort
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Virtual leader configuration

Control parameters

Temporal correspondence

Signature difference

Control effort
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Joint improvisation configuration

Control parameters

Temporal correspondence

Signature difference

Control effort
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Comparison

VP mode RMS Time Lag EMD(VP, sig)

Follower 0.0918 0.1869 0.1522

Leader 0.0981 -0.1280 0.0630

JI 0.0623 0 0.1127

HP leading

HP following

no roles



• To test the effect of tuning the weight      , we asked the VP to track a 
simple reference signal and computed how some key parameters are 
affected by its variation

45

Effects of tuning θp in a LF configuration

Effects of tuning parameter θp on the similarity

Effects of tuning parameter θp on the temporal correspondence

Reference signal: r=0.5sin(2t)



• Relative position error (RPE):
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Effects of kinematic similarity in a LF configuration

Słowiński, Piotr, et al. "Dynamic similarity promotes interpersonal coordination in joint action." Journal of The Royal Society Interface 13.116 (2016): 20151093.

RPE

EMD(σHP, σVP)

0

-0.04

0.04

0.08

0.12
Lower values of EMD between the 
signature assigned to the VP (leader) and 
that of the HP (follower) correspond to 
lower position mismatches
(R=0.48>0, Pearson’s coefficient).

kinematic similarity 
promotes coordination



• We carried out some tests to compare our approach with previous ones

1. the reactive predictive controller proposed by Noy et al;
2. the HDC model using both an HKB and a Jirsa-Kelso excitatory 

model.
• We first asked a human to follow a pre-recorded leading trajectory.
• We then used our OFC approach, the RPC and HDC to track the same trajectory (for the 

OFC we use as a signature that of the human player).
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Comparison with RPC and HDC

Noy, Lior, Erez Dekel, and Uri Alon. "The mirror game as a paradigm for studying the dynamics of two people improvising motion together." Proceedings of the National 
Academy of Sciences 108.52 (2011): 20947-20952.
G. Dumas, G. C. de Guzman, E. Tognoli, and J. A. S. Kelso, “The human dynamic clamp as a paradigm for social interaction”. Proceedings of the National Academy of 
Sciences of the United States of America, vol. 111, no. 35, pp. E3726–E3734, Sep. 2014.

TC index HP OFC RPC HDC-HKB HDC-JKE

RMS 0.16 0.1 0.98 0.46 4.2

CV 0.66 0.87 0.18 0.21 0.02

TL 0.2 0.13 0.04 -0.94 -0.69



• Note that our OFC matches best the behaviour of the HP when playing the same game 
both in terms of temporal correspondence and motor signature.
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Signature control performance

EMD(HP, OFC) 0.1554

EMD(HP, RPC) 2.4822

EMD(HP, HDC-HKB) 3.9858

EMD(HP, HDC-JKE) 0.4752



• Using our approach it is also possible to run “in-silico" simulations of virtual players characterised
by different motor signatures.

• It can be useful for experimental design and quick testing of different hypotheses:

• Still there is a big problem. We are using
pre-recorded human velocity signals to generate the
avatar kinematic signature

49

Virtual players

1. Each VP is fed the signature of a given HP to 
generate its movement effectively mirroring 
the motor signature of that player;

2. Two VPs can then be made to play against each
other in silico;

3. The parameters of the MPC can be tuned to make
the two VPs play any type of game configuration. 

HP 1

HP 2

VP 1

VP 2
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Generating reference signatures for the avatar

IMS reference signal

Inner dynamics

Control: minimizing the position error with HP 

Control: minimizing the 
velocity error with reference 



ECC 2018, Limassol, Cyprus 51

Control Architecture: block diagram

How can we generate a real-time reference signal in order 

to confer a human identity to the VP, allowing it to behave 

autonomously and with desired kinematic properties?

IMS reference signal



• Based on Markov Chain, we model the IMS Generator via the following three 
steps:

1. Data collection and pre-processing
2. Markov model training
3. Data generation

52

Markov Chain and Modelling

Markov Chain

Finite state stochastic model, characterized by:
• Initial state 𝑠!
• Transition matrix 𝐴 ≔ [𝑎"#] where 𝑎"# ≔ 𝑃 𝑠$%& = 𝑗 | 𝑠$ = 𝑖



1.   Data collection and pre-processing
Convert the continuous measurements in a finite set of symbols
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Modelling of IMS Generator

Recorded 
Position 

time series

Overlapped Hamming Window

FFT

Feature vector
(FFT coefficients)

Vector quantization



2.   Markov model training

3.   Data generation

ECC 2018, Limassol, Cyprus 54

Modelling of IMS Generator

𝐴 =
𝑎!! ⋯ 𝑎!"
⋮ ⋱ ⋮
𝑎"! ⋯ 𝑎""

IFFT
Vector 

de-quantization



• To validate our methodology based on Markov Chain, experiments were 
performed to acquire some human IMS:

• 6 participants
• Each participant was asked to move his/her index of preferred hand in a spontaneous way 

from left to right in order that the his/her individual motor signature could emerge

55

Experiments



Different analysis tools have been considered to assess quality of IMS   generation based 
on Markov chain

• Velocity Probability Density Function (PDF) of the virtual agent (IMS)

• Earth mover distance: to assess difference between IMS of the reference human and that 
generated by our approach

• Multidimension scaling (MDS) allows to map IMSs as points in an abstract geometric space known 
as similarity space where the Euclidean distance between two points is related to that between 
the corresponding IMSs.
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Metrics

𝐸𝑀𝐷 𝑃𝐷𝐹#$(𝑧), 𝑃𝐷𝐹%$(𝑧) = 6
&

𝐶𝐷𝐹#$ 𝑧 − 𝐶𝐷𝐹%$(𝑧) 𝑑𝑧
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Validation

The PDF is well approximated
The characteristic region of the IMS 
generator is included in the region of the 
real human player

MC’s IMS
HP’s IMS



Putting all together…
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Validation

Nonlinear 

Model

Optimal control

Optimal control

Zhai, C., Alderisio, F., Slowinski, P., Tsaneva-Atanasova, K., & di Bernardo, M. (2017). Design and Validation of a Virtual Player for Studying Interpersonal 
Coordination in the Mirror Game. IEEE Transactions on Cybernetics, 1–30.



• Inner dynamics: Haken – Kelso – Bunz oscillator

• 𝑥, 𝑥̇, 𝑥̈ are the position, velocity and acceleration of the VP
• 𝜔 is the frequency; 𝛼, 𝛽, 𝛾 characterize the damping

• Optimal Control

• 𝑟̂' is the measured position of the HP
• 𝑟̇( is the reference velocity
• 𝜂, 𝜃', 𝜃) positive weights to tune the control energy
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Details on Cognitive Architecture: dynamics and control

𝑥̈ + (α𝑥̇! + 𝛽𝑥! − 𝛾)𝑥̇ + 𝜔!𝑥 = 𝑢

min
"

𝐽 =
1
2

𝜃# 𝑥 𝑡$%& − 𝑟̂# 𝑡$%&
!
+8

'!

'!"#
𝜃( 𝑥̇ 𝜏 − 𝑟̇)(𝜏) ! + 𝜂𝑢 𝜏 ! 𝑑𝜏

Temporal correspondence Control effortSignature control



The Virtual Player is able to play the Mirror Game with a Human Player exhibiting a desired 
human IMS

Leader – Follower Session with Virtual Player as Leader

60

Validation

Virtual 
Player

Human 
Player
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Validation
VP as follower VP as leader

Human player
Virtual player
IMS reference

Some numerical value…

VP as follower
CV = 0.933
RMS = 0.112
Relative phase = 0.394 ± 0.408
EMD(Ref, VP) = 0.006
EMD(HP, VP) = 0.018

VP as leader
CV = 0.868
RMS = 0.122
Relative phase = -0.664 ± 0.574
EMD(Ref, VP) = 0.0263
EMD(HP, VP) = 0.011



• Are traditional control approaches fit for the purpose?
• How can we render the avatar truly autonomous and able to observe and 

learn humans how to coordinate with each other?
• The answer is to move towards machine-learning based control algorithms

62

Another approach

Controller System

Nonlinear control approach

• Human model not known
• Deterministic nature of the controller
• Fine tuning of control parameters

We propose a data-driven
architecture based on 

reinforcement learning

(Q-learning)



Basic concept:
• The agent interacts with the environment taking an action 𝑎! from the set of all possible 

actions

63

Reinforcement Learning

• The agent chooses the action  following a 
“policy”  𝜋: 𝑆 → 𝐴

• The agent can observe the state 𝑠! of the 
environment following its action

• The agent receives a reward 𝑟! that measure 
the “goodness” of the current state 𝑠! ENVIRONMENT

(PLANT)

CONTROLLER



where N are the number of states, A the number of possible actions

Iterative approach:
Q-learning (Temporal Difference Learning)
• No knowledge on the environment
• Online estimation of the state value using the observed rewards and the estimated future rewards
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Reinforcement Learning

Solving a reinforcement learning problem means solving a 
system of NxA non linear equations, Bellman optimal 

equations, (one for NxA states) in NxA unknowns
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Learning phase: our approach

Ideally In practice

To avoid a large amount of data directly from humans, we propose first to learn the cyber player with 
synthetic data generated via a nonlinear stochastic model of human behaviour (called Virtual Trainer)
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Learning process in detail

The cyber player:

1. observes its state and the 
partner’ positions and velocity

2. takes a control action 
according to its policy

3. receives a reward

4. updates the q-table and 
consequently updates the 
policy

𝜌 = − 𝑥 − 𝑥! − 0.1 𝑥̇ − 𝑥̇! " − 𝜂𝑢

𝑥, 𝑥̇, 𝑥#, 𝑥̇#

𝜀-greedy	policy



67

Qualitatively results

• Player target = VT_5

• Training set = 
• VT_1, VT_2, VT_3, VT_4

• Further VT_6 used as 
validation

• The cyber player has 
been trained both to 
play as leader and as 
follower

Against VT_2
(included in the train set)

CP as leader

CP as follower

Against VT_6
(not included in the train set)

Cyber player
VT follower
VT leader
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Quantitative results

Paired t-test (95% of confidence) has been performed for each pairs of players. No 
statistically significant difference has been revealed.
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Cyber player playing with real human players

Cyber player and HP_5 was made to play with other 4 different human players
(NB. The cyber player was trained on VT_5, emulating HP_5)

Experiments were performed through CHRONOS. We performed 8 trials for each pair 
of players lasting 60 seconds.

F. Alderisio, M. Lombardi, G. Fiore, and M. di Bernardo, “A novel computer-based set-up to study movement coordination in 
human ensembles,” Frontiers in Psychology, vol. 8, p. 967, 2017.
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Qualitative results
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Quantitative results

Paired t-test (95% of confidence) has been performed for each pairs of players. No 
statistically significant difference has been revealed.
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• Man is by nature a social animal
(Aristotle, “Politics”).

• Understanding how and why human 
beings interact in groups are key 
research questions across different 
scientific fields.

• Answering these paramount 
questions is challenging as 
interpersonal cooperation involves 
different levels of interactions.

73

Background
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Movement coordination in larger human ensembles

• Groups of people spontaneously coordinate their movements in 
several daily activities.

• How can we engineer avatars or robots able to merge within human 
groups?

• Some big questions: 
What are the mechanisms that underlie 
synchronization in a group of people?
How do the topologies of social interactions and the 
individual dynamics of the players affect the level of 
synchronization?
Does a leader spontaneously emerge when a group of 
people synchronise?



Extension of the mirror game to a multiplayer scenario

• We take as a paradigmatic example the case where participants are asked to generate an oscillatory 
hand motion and coordinate it with that of the others.

• Participants are connected over different interaction patterns implemented through visual 
coupling, meaning that they are able to see the movements of only a designated subset of the 
others.

Alderisio, F., Fiore, G., Salesse, R. N., Bardy, B. G., & di Bernardo, M. (2016). Interaction patterns and individual dynamics shape the way we move in synchrony. 
Nature Scientific Reports, 2017



76

Experiments - all to all network

Alderisio, F., Fiore, G., Salesse, R. N., Bardy, B. G., & di Bernardo, M. (2016). Interaction patterns and individual dynamics 
shape the way we move in synchrony. arXiv preprint arXiv:1607.02175.
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Mirror game- setups

• Pendula

• Manipulating natural frequency

• Social feedback

[2] Alderisio, F., Fiore, G., Salesse, R. N., Bardy, B. G., & di Bernardo, M. (2017). Interaction patterns and individual dynamics shape the way we 
move in synchrony. Scientific reports, 7(1), 1-10.
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Mirror game- setups

• Setup 2- Chronos

• Possible use of virtual agent 

• No social feedback

[3] Alderisio, F., Lombardi, M., Fiore, G., & di Bernardo, M. (2017). A novel computer-based set-up to study movement coordination in human 
ensembles. Frontiers in Psychology, 8, 967.



Modeling and effects of graph structure 

• We can use nonlinear Kuramoto oscillators to characterize the motion of the group
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Introducing an artificial agent in the group

• We are interested in merging a virtual agent with the group

• Mathematically, group of agents performing a joint task can be modelled as a complex network of 
dynamical systems

Chronos

nodetopology
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Control problem

We want to design a cognitive architecture, based on real time feedback control, able to drive an 
artificial avatar in performing joint oscillatory motor task with a group of people 

while exhibiting human-like kinematic features

Controller System

Nonlinear control approach

• Human model not known
• Deterministic nature of the controller
• Fine tuning of control parameters

We propose a data-
driven architecture 

based on deep 
learning

(Deep Q-network)
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Our approach

Group performing the oscillatory task 
with a specific interaction pattern

? replace

Phase 1: 
Learning from humans

Phase 2: 
Playing with humans
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Phase 1: training the cyber player

The cyber player:

1. observes the vector of 
agents’ positions and velocity

2. takes a control action 
according to its policy

3. receives a reward

4. trains the neural network 
that updates the policy

𝜌 = − 𝑥 − 𝑥! − 0.1 𝑥̇ − 𝑥̇! " − 𝜂𝑢

𝑥̅, ̇𝑥̅

𝜀-greedy	policy

Group

Cyber player

Policy Virtual 
agent’s state Reward

Neural 
Network

𝑥̅*

𝑢* 𝑥*+!

𝑥̅*+!



• How can we get enough data for the artificial agent?

• To avoid a large amount of data directly from humans, we propose first to learn the cyber player 
with synthetic data generated via a nonlinear stochastic model of human behaviour
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Phase 1: training the cyber player

Cyber 
Player

Zhai, C., Alderisio, F., Slowinski, P., Tsaneva-Atanasova, K., & di Bernardo, M. (2017). Design and Validation of a Virtual Player for Studying 
Interpersonal Coordination in the Mirror Game. IEEE Transactions on Cybernetics, 1–30.

Nonlinear virtual agent
based on Markov Chains

Virtual Trainer

𝑉𝑇!, 𝑉𝑇,, 𝑉𝑇- have been used for 
the training 𝑉𝑇. has been used as 

target player
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Phase 2: playing with group 

Temporal correspondence on a random topology
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Phase 2: playing with group 

Metric CP Human-like T-test
Relative phase -5.127e^-4±0.032 -2.506e^-4±0.023 W(54)=732, 

p=0.753, 
effect size=-0.059

RMS position error 0.062±0.018 0.054±0.006 W(54)=606, 
p=0.171, 
effect size=-0.213

Reaction time -0.021±0.031 -0.034±0.051 W(54)=469.5, 
p=0.096, 
effect size=-0.264

Max cross-covariance 0.881±0.064 0.887±0.024 W(54)=801, 
p=0.788, 
effect size=-0.040

Group synch index 0.821±0.086 0.804±0.046 W(54)=593, 
p=0.139, 
effect size=-0.230

Human-like features on a random topology

Since the data were not normally distributed, we performed the Wilcoxon t-test as a non-
parametric test. All metrics reports a p-value > 0.05



Outline

• Introduction and motivation
• The mirror game and the need for a virtual player
• Previous approaches
- Reactive Predictive models [Noy et al, 2011]
- Human Dynamic Clamp [Dumas et al, 2009; 2014]

• A feedback control approach 
- adaptive control
- optimal control

• Validation and performance evaluation
• Movement coordination in larger human ensembles
• Conclusions
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• We have discussed the problem of designing a virtual player able to play the 
mirror game in different configurations.
• The virtual player has to lead, follow the human player or improvise with 

him/her.
• This problem can be seen as a nonlinear feedback control problem (a 

solution based on optimal feedback control was proposed).
• The virtual player is then able to guarantee temporal correspondence and also to 

exhibit a motor signature that can be chosen at will.
• Once parameterised, the VPs can be made to play against each other opening the 

possibility of carrying out “in-silico” experiments even in multiplayer 
configurations.
• We explored methods based on machine learning to render the avatar truly 

autonomous
• We introduced the problem of looking at the emergence of coordination in 

Human groups and designing avatars in that context
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Conclusions



• Great area at the edge between engineering and computational psychology and 
social sciences
• Many possible applications to rehabilitation and medicine
• The design of better cognitive architectures is essential in many areas of science 

and engineering, e.g. social robotics
• Many open problems and challenges remain:
• What if the tasks are more complicated (assembling something together, 

playing sports etc)?
• What if the group includes patients with social disorders (autism, 

schizophrenia etc)?
• What if the motion is not 1D but becomes fully 3D?
• How does leadership emerges? Can VPs assume leadearship roles? How?
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Lots still to be done
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